Probing Sub-Micron Forces by Interferometry of Bose-Einstein Condensed Atoms
نویسندگان
چکیده
We propose a technique, using interferometry of Bose-Einstein condensed alkali atoms, for the detection of sub-micron-range forces. It may extend present searches at 1 micron by 6 to 9 orders of magnitude, deep into the theoretically interesting regime of 1000 times gravity. We give several examples of both four-dimensional particles (moduli), as well as higher-dimensional particles – vectors and scalars in a large bulk– that could mediate forces accessible by this technique. PACS numbers: 04.50.+h, 04.80.Cc, 11.25.Wx [email protected] [email protected]
منابع مشابه
Coherent matter wave inertial sensors for precision measurements in space
We analyze the advantages of using ultra-cold coherent sources of atoms for matter-wave interferometry in space. We present a proof-of-principle experiment that is based on an analysis of the results previously published in [1] from which we extract the ratio h/m for 87 Rb. This measurement shows that a limitation in accuracy arises due to atomic interactions within the Bose-Einstein condensate...
متن کاملSub-poissonian number differences in four-wave mixing of matter waves.
We demonstrate sub-Poissonian number differences in four-wave mixing of Bose-Einstein condensates of metastable helium. The collision between two Bose-Einstein condensates produces a scattering halo populated by pairs of atoms of opposing velocities, which we divide into several symmetric zones. We show that the atom number difference for opposing zones has sub-Poissonian noise fluctuations, wh...
متن کاملInterferometry and EPR Entanglement in a BEC
Entanglement is the basis of the EPR paradox, and macroscopic entanglement is a challenging frontier in modern physics [1]. It also has potential applications in sub shot-noise interferometry and ultra-sensitive detection beyond the standard quantum limit. Bose Einstein condensates (BEC) of ultracold atoms are excellent candidates to provide entangled states involving a large number of massive ...
متن کاملOptically trapped atom interferometry using the clock transition of large 87Rb Bose–Einstein condensates
We present a Ramsey-type atom interferometer operating with an optically trapped sample of 106 Bose-condensed 87Rb atoms. We investigate this interferometer experimentally and theoretically with an eye to the construction of future high precision atomic sensors. Our results indicate that, with further experimental refinements, it will be possible to produce and measure the output of a sub-shot-...
متن کاملOptical Confinement of a Bose-Einstein Condensate
Bose-Einstein condensates of sodium atoms have been confined in an optical dipole trap using a single focused infrared laser beam. This eliminates the restrictions of magnetic traps for further studies of atom lasers and Bose-Einstein condensates. More than 5 3 106 condensed atoms were transferred into the optical trap. Densities of up to 3 3 1015 cm23 of Bose condensed atoms were obtained, all...
متن کامل